Maxwell-Stefan Diffusivities and Velocity Cross-Correlations in Dilute Ternary Systems
نویسندگان
چکیده
The Maxwell-Stefan (MS) approach is commonly used for describing mass transport by diffusion in gases and liquids since it correctly accounts for the chemical potential gradient as driving force. It is well known that MS diffusivities are concentration dependent which should be taken into account in practical applications. Unfortunately, it is difficult to obtain MS diffusivities both from experiments and molecular simulations. Therefore, there is a considerable interest in predictive models describing the concentration dependence of MS diffusivities. MS diffusivities can be expressed as functions of (1) easily obtainable self-diffusivities, and (2) the integrals of velocity cross-correlations. By assuming that the latter terms are small, we recently derived the multicomponent Darken equation. The objectives of the present study are twofold: First, we present a validation of the multicomponent Darken equation in ternary systems. Second, we investigate the dependence of velocity crosscorrelations on concentration and system size. A linear relation between the velocity cross-correlations and 1/N is found (“N” being the total number of © 2011, Thijs J.H. Vlugt diffusion-fundamentals.org 16 (2011) 81, pp 1-11
منابع مشابه
Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes
A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...
متن کاملThe Generalized Maxwell-Stefan Model Coupled with Vacancy Solution Theory of Adsorption for Diffusion in Zeolites
It seems using the Maxwell-Stefan (M-S) diffusion model in combination with the vacancy solution theory (VST) and the single-component adsorption data provides a superior, qualitative, and quantitative prediction of diffusion in zeolites. In the M-S formulation, thermodynamic factor (Г) is an essential parameter which must be estimated by an adsorption isotherm. Researchers usually utilize the ...
متن کاملPredicting Benzene Fluxes in NaX Membranes from Atomistic Simulations of Cooperative Diffusivities
In the preceding companion article, we reported high-temperature molecular dynamics (MD) simulations to trace single-molecule as well as collective mean square displacements over a range of temperatures (6001500 K) and loadings (infinite dilution to four benzenes per supercage) to evaluate respectively the selfdiffusivities and cooperative (alternatively Maxwell-Stefan) diffusivities of benzene...
متن کاملModeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method.
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute so...
متن کاملLattice Boltzmann scheme for electrolytes by an extended Maxwell-Stefan approach.
This paper presents an extended multicomponent lattice Boltzmann model for the simulation of electrolytes. It is derived by means of a finite discrete velocity model and its discretization. The model recovers momentum and mass transport according to the incompressible Navier-Stokes equation and Maxwell-Stefan formulation, respectively. It includes external driving forces (e.g., electric field) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008